Is more activity always better?
A department-wide study of relationships between classroom practices and student performance

Megan Barker (UBC), Lisa McDonnell (UCSD), Laura Weir (Kwantlen), Natalie Schimpf (UBC), Tammy Rodela (UBC)

And thanks to Trish Schulte, Martha Mullally, Erica Jeffery, and Garrett Huwyler

UBC Carl Wieman Science Education Initiative
barker@zoology.ubc.ca http://ls-cwsei.biology.ubc.ca
Inspired by last year at SABER...

Scott Freeman et al, PNAS 2014:

“Active learning increases student performance in science, engineering, and mathematics”

Travis Lund et al, CBE-LSE 2015:

Using COPUS to capture department-wide instructional practices.
Next Generation Research Questions...

- Do different active learning techniques contribute more to student learning than others?
- Is more always better?

Our operationalized variables (what we measured):

- Performance on a diagnostic test
- Specific teaching approaches
- COPUS data about specific classroom practices
- Student learning
Scope and Tools

COPUS observations

- 33 lecture sections in 17 biology classes
- For each, observed “a typical week” (~3 hours)

<table>
<thead>
<tr>
<th>Course Year</th>
<th># Course Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Diagnostic tests

- One test per course; developed with instructor
- ~10-15 multiple choice concept questions
- 217 questions total, compiled from validated inventories or developed with instructors
- Over 6500 (non-unique) students tested
Instructional styles & learning gains

Normalized change for a given student (from Marx & Cummings 2007):
For increases: \(\frac{(\text{Post} - \text{Pre})}{(100 - \text{Pre})} \)
For decreases: \(\frac{(\text{Post} - \text{Pre})}{\text{Pre}} \)

* \(p<0.05 \)
Peer discussion using clickers

82% of our classes spend at least some time on peer discussion with clickers.

Here, more is better... to a point.

F_{1,32} = 5.51, r^2 = 0.27, p = 0.03
Impact of the presence/absence of a given activity

<table>
<thead>
<tr>
<th>Class level</th>
<th># sections</th>
<th>Section size</th>
<th>% sections using groupwork</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years 1&2</td>
<td>22</td>
<td>242 +/- 48</td>
<td>100%</td>
</tr>
</tbody>
</table>

100% using clickers
41% using worksheets
91% using ‘other groupwork’

Using the 1st/2nd year data:
Use of worksheets, in particular, supports student learning

![Graph showing mean normalized learning change (%) with error bars.](image)

Worksheets were used in observed lectures
Worksheets were not used in observed lectures

* p<0.05
For worksheets, is more time-on-task better?

A trend, but the fit is not significant.

How to account for the variability between sections?

Diagram:
- X-axis: Average % class time - students doing worksheets in groups
- Y-axis: Average normalized change on diagnostic test
- Size of data point indicates relative size of class section.
For worksheets, is more time-on-task better?

A trend, but the fit is not significant.

How to account for the variability between sections?

Can we rule out worksheet ‘quality’?

Two different sections using the same worksheet

For worksheets, is more time-on-task better?

- Clickers
- Our dept has spent time on these – easily implemented and good to do.

Worksheets

Average normalized change on diagnostic test

Average % class time - students doing **worksheets in groups**

Size of data point indicates relative size of class section.
Class time, choreography, and concurrent activities

Raw COPUS data of each class:
Conclusions & Next Steps

Instructional style has a big impact on student learning!

Clickers (at least for us) are a valuable use of class time
 • Even trying clicker peer discussion in a small way is beneficial
 • Choreography has been well-developed/supported

Worksheets: promising, but:
 • Good potential for structured work and feedback
 • We need to think carefully about worksheet choreography within the class, and other factors

More active is generally better... but the data doesn’t account for all of the variability:
 • Current data is not yet a strong predictor
 • Need stronger analyses of COPUS, and need other tools!
<table>
<thead>
<tr>
<th>Validated concept questions - topic</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomechanics</td>
<td>Knudsen et al., 2003</td>
</tr>
<tr>
<td>Genetics</td>
<td>Smith et al., 2008</td>
</tr>
<tr>
<td>Osmosis</td>
<td>Fisher et al., 2011</td>
</tr>
<tr>
<td>Meiosis</td>
<td>Kalas et al., 2013</td>
</tr>
<tr>
<td>Molecular Biology</td>
<td>Couch et al., 2014</td>
</tr>
<tr>
<td>Phylogenetic trees</td>
<td>Baum et al., 2010</td>
</tr>
<tr>
<td>Genetic drift</td>
<td>Price et al., 2013</td>
</tr>
<tr>
<td>Dominance</td>
<td>Abraham et al., 2014</td>
</tr>
<tr>
<td>Biochemistry</td>
<td>Villafane et al., 2011</td>
</tr>
<tr>
<td>Population Dynamics</td>
<td>Hansen et al.</td>
</tr>
<tr>
<td>Biological Experimental Design</td>
<td>Deane et al., 2014</td>
</tr>
<tr>
<td>Transcription and Translation</td>
<td>Taylor et al.</td>
</tr>
<tr>
<td>Carbon cycling</td>
<td>Cordero Maskiewicz et al., 2012</td>
</tr>
<tr>
<td>Molecular/Cell Biology</td>
<td>Shi et al., 2010</td>
</tr>
<tr>
<td>Intro Biology</td>
<td>Klymkowsky et al., 2010</td>
</tr>
<tr>
<td>Photosynthesis</td>
<td>Parker et al, 2012</td>
</tr>
<tr>
<td>Enzyme-substrate interactions</td>
<td>Linenberger and Bretz, 2012</td>
</tr>
</tbody>
</table>

Thank you!